OPENAIR-CN Deployment

4th OpenAirInterface Workshop, Fall 2017
November 7th, 2017

Ivan Seskar
WINLAB
Department of ECE
Rutgers, The State University of New Jersey
seskar (at) winlab (dot) Rutgers (dot) edu
Orbit Testbed

VPN Gateway to Wide-Area Testbed

Gigabit backbone

Front-end Servers

Application Servers
(User applications / Delay nodes / Mobility Controllers / Mobile Nodes)

Control switch

Data switch

Back-end servers

RF/Spectrum Measurements

Interference Sources

Internet VPN Gateway / Firewall
Radio Node (Version 4)

- Intel Xeon E5-2600v3 with 18 cores
- 64 GB DDR4
- 2 x 10G Ethernet ports
- 2 x Gigabit Ethernet ports
- PCI-Express 3.0 X16
- 8 x USB 3.0
- OOB Mgmt.

- Intel Core i7-4770 3.4 GHz Q87T Express chipset
- 16 GB DDR3
- 2 x Gigabit Ethernet ports
- PCI-Express 2.0 X16
- 2 x Mini-PCIE Express socket
- 8 x USB 3.0
- OOB Mgmt.
Current ORBIT Grid SDRs:

- Approximately 10 USRP and ~30 USRP2, 36 USRP X310s, 16 B210s,
- 16 RTL-SDR, 4 Nutaq, WARP, Zync and GENI CR-Kit platforms

- 64 units are PPS/10 MHz ref. synchronized
ORBIT Grid
Massive-MIMO

- 32 USRP X310s
 - Available FPGA resources:

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP48 Blocks</td>
<td>58K</td>
</tr>
<tr>
<td>Block Rams (18 kB)</td>
<td>14K</td>
</tr>
<tr>
<td>Logic Cells</td>
<td>7.2M</td>
</tr>
<tr>
<td>Slices (LUTs)</td>
<td>1.5M</td>
</tr>
</tbody>
</table>

- 2 x UBX-160 (10 MHz - 6 GHz RF, 160 MHz BB BW)
- 2 x 10G Ethernet for fronthaul/interconnect
- Four corner movable mini-racks (4 x 16 x 16 -> 1 x 64 x 64)
- CloudLab Rack: 500+ GPP Cores with 24+ GPUs (TESLA P100) and 100G SDN aggregation switch
GENI: Infrastructure For At-Scale Experimentation

Deeply programmable

Programmable & federated, with end-to-end virtualized “slices”

Heterogeneous, and evolving over time via spiral development
- GENI started with exploratory, rapid prototyping 8 years ago
- GENI design assumes federation of *autonomously owned and operated* systems
- Yearly prototyping cycle for an idea: develop, integrate and *operate*
- Experimenters use the testbed *while we are building it out*
- Even prototypes have “activist” users, and must evolve to satisfy those users or fade away. Two of five original design frameworks predominate now.
- “Horizontal” dataplane slicing as a service (or sometimes just engineered)
- “Vertical” control plane APIs to negotiate and allocate resources
• 32 LTE and WiMAX BS on 14 campuses
• SDN (Click and OVS based) datapath/backbone
• Sliced, virtualized and interconnected through Internet2
• 10 mini-ORBIT deployments some with SDRs
GENI LTE eNodeB Platforms

<table>
<thead>
<tr>
<th></th>
<th>Ip.access</th>
<th>Amarisoft (USRP)</th>
<th>OAI (USRP)</th>
<th>Airspan</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD</td>
<td>FDD/TDD</td>
<td>FDD/TDD</td>
<td>TDD/(FDD)</td>
<td></td>
</tr>
<tr>
<td>10 MHz</td>
<td>20 MHz</td>
<td>10 MHz</td>
<td>20 MHz</td>
<td></td>
</tr>
<tr>
<td>2 x 10 dBm</td>
<td>20 dBm</td>
<td>20 dBm</td>
<td>2 x 37 dBm (2 x 40 dBm)</td>
<td></td>
</tr>
<tr>
<td>13 Mbps</td>
<td>BW limited</td>
<td>30 Mbps</td>
<td>70-300 Mbps</td>
<td></td>
</tr>
<tr>
<td>4 (max idle 64)</td>
<td>BW limited</td>
<td>5 (25)</td>
<td>> 100 (256)</td>
<td></td>
</tr>
</tbody>
</table>
OAI ePC in GENI Rack
ONF Wireless & Mobile Working Group (WMWG)

• Mission and Goals
 – Examine the unique requirements of SDN in wireless and mobile networks
 – Simplify the interaction between wireless physical networks and packet networks with centralized control and management.
 – Develop reference architectural descriptions that encompass different elements of ONF based technologies in wireless and mobile network domains
 – Identify enhancements to ONF technologies to improve operation of mobile and wireless networks.

 • ONF technologies include OpenFlow Switch, OF-Config Protocols, Northbound interfaces and associated architectures.
Open Network Automation Platform (ONAP)

“Open source software platform that delivers capabilities for the design, creation, orchestration, monitoring, and life cycle management of:

- Virtual Network Functions (VNFs)
- The carrier-scale Software Defined Networks (SDNs) that contain them
- Higher-level services that combine the above”

Design-Time Environment
- Design, define and program the platform

Execution-time environment
- Execute the logic programmed in the design phase.
ONAP Open Labs

Provide an End to End testing on real environment, focusing on:

- Help promote the industry adoption through demonstrating ONAP capabilities
- Interoperability testing with multi-vendor’s hardware and software in “real” environment (without IT constraint).
- Continuous Integration and Conscious distribution testing with all components (i.e. OpenStack, etc.)

<table>
<thead>
<tr>
<th>China Mobile ONAP Lab</th>
<th>China Mobile</th>
<th>Beijing, China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliance Jio R&D Labs</td>
<td>Reliance Jio Infocomm</td>
<td>Maharashtra, India</td>
</tr>
<tr>
<td>China Telecom ONAP Lab</td>
<td>China Telecom</td>
<td>Beijing, China</td>
</tr>
<tr>
<td>WIP</td>
<td>Intel</td>
<td>USA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>China Mobile ONAP Lab</th>
<th>China Mobile</th>
<th>Beijing, China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange Integration Center</td>
<td>Orange</td>
<td>France</td>
</tr>
<tr>
<td>TLAB</td>
<td>AT&T Advanced Technologies</td>
<td>USA</td>
</tr>
<tr>
<td>ORBIT/WINLAB</td>
<td>Rutgers University/AT&T</td>
<td>USA</td>
</tr>
</tbody>
</table>
ONF Wireless Transport 3rd Proof Of Concept (PoC)

Scope of the PoC:
• Extend the standardized μWave/mmWave model in a multivendor microwave network to cover all parameters modeled by TR-532
• Verify/validate the extensibility of the model to mmWave equipment (both indoor and outdoor)
• Demonstrate new use cases: ‘closed Loop automation’, ‘frequency spectrum management’, ‘Test Automation’.

Hosted by AT&T in WINLAB, 24-28 October 2016
Permanent ONAP Testbed
OWL (ONAP Wireless Lab) secure access

3 step security:

1. Registered access from the internet to orbit-lab
2. Limited access for selected members from ORBIT community to ONAP cloud, (controlled by ONAP).
3. VM/application specific access mechanisms (SSH, Basic-auth, certificates, etc.).
10Gbps Wireless xHaul (ONAP architecture + ONF apps)

- **ONAP OMF (Operational Management Framework)**
 - Client apps in browser (ux)
 - REST (AAI)
 - ONAP API Connector
 - SDN-C for Wireless (ODL)
 - REST (AAI)
 - REST (VES)
 - NETCONF/ONF-512/532 for management and control
 - RESTCONF to mount NETCONF servers (devices)
 - HTTP (html, js, css)
 - WebSocket
 - ONAP API Connector
 - deviceManager
 - webSocketManager
 - $database
 - commons [openDaylight, database, mediator, log, Common Objects]

- **AAI (Active and Available Inventory)**
- **DCAE (Data Collection, Analytics and Events)**

- **ONAP OMNI (SDN-C for Wireless (ODL))**

- **10Gbps Wireless xHaul Network**

https://wiki.onap.org/display/DW/Architecture
Example → Network Adapters (mediators) @ OWL (ORBIT)

ONAP

vm1-sdnc

Simulation of min 24 wireless devices

1 2 3 4
Devices in New Jersey

vm1-simulator

A B C D E F
Devices in Ottawa Devices in Beijing Devices in Madrid

Mediators

public internet
Multi-vendor/operator 4.1th PoC (Nov. 27th)
4.1 PoC: Multi-domain multi-technology ONAP

- Expand ONAP support to other wireless devices
- NETCONF with YANG model for eNodeBs
- Can we do it for OAI
Platforms for Advanced Wireless Research

Driving Future Advanced Wireless Technologies

Silently, invisibly, all around us, wireless signals sail through the air, transmitting information emanating from our smartphones, pacemakers, pollution sensors, and even satellites millions of miles away in space.

Over the last decade, there has been widespread growth in the emergence and use of mobile, connected devices that use wireless transmissions.

But experts believe this is just the tip of the iceberg. In the future, as wireless communications technologies get cheaper and smaller, more and more devices will connect wirelessly to global networks – receiving and broadcasting their status, and putting this information in play in the Internet of Things and a smarter, more connected world.

Governance Process

- PAWR Board
- PAWR Partnership Organization
- Proposal Review Committee
- AWRPs Selected

How does it work?

Industry Consortium
- Cash, equipment & material, engineering, marketing & R&D support

Federal Agencies
- RFP and Grants, experimental spectrum licenses, other support

The Administration’s Advanced Wireless Research Initiative, led by the National Science Foundation, seeks to spur the development of new wireless technologies as well as the research infrastructure necessary to test innovations at large scales.

- Millimeter-Wave (mmWave): ultra-high-frequency millimeter-waves have been shown to transmit data at ultra-high speeds across networks that cover a few city blocks, making it possible to download the equivalent of a high-definition movie within a few seconds.
- Dynamic spectrum sharing: devising technologically, economically and legally feasible ways to share limited radio spectrum bandwidth would allow wireless providers to serve an exponentially growing number of devices – expected to exceed one trillion devices over the next decade.
- Network virtualization: software-defined networking (SDN) and software-defined infrastructure (SDI) are enabling improved security, performance and resilience in both the wired and wireless communications.