I/Q Record-Playback in OAI

Bruno Mongazon-Cazavet, Erick Bizouarn
Tuesday 7 November 2017
OAI FULL ENB S1 SETUP @ BELL LABS

Smartphone

Duplexer

Attenuator

USRP B210/B205

usb3

eNB

Bell Labs ePC

Internet

Switch

Linux/Windows

Linux/Windows

GbE

Nokia Bell Labs - OpenAirInterface Alliance restricted
OAI SPLIT ENB S1 SETUP @ BELL LABS

Diagram showing the setup with various components such as Smartphone, Duplexer, Attenuator, USRP B210/B205, RRU, Linux, GbE Switch, Linux/Windows, RCC, and Bell Labs ePC.
PROBLEM STATEMENT

• eNB with radio board attached requires “periodic 1ms I/O”
• This makes the following operations very challenging/not possible:
 • **Step-by-step debugging**
 Not possible without breaking the radio operation.
 • **Memory consumption checking**
 Not possible because instrumented code executes too slowly.
 • **Source code Coverage analysis, learning and rework**
 Not possible because instrumented/optimized code executes too slowly.
 • **Non-regression testing and features validation**
 Testing with real radio is time and resources consuming, hard to reproduce with accuracy.
CURRENT SOLUTIONS

- eNB diagnostic tools (LOG, T-Trace, softscope, gtk analysis, time measurements) are useful but:
 - **Instrumentation in the code disturbs code being instrumented**
 Heisenberg principle
 - **Instrumentation shall be asserted**
 Instrumentation is also code and not bug-free!
 - **Visual tools automation is painful**
 These tools should be avoided

- Current solutions do not allow incremental development life-cycle and slow bug-fix, features development and overall code quality. This is very critical from OSA collaborative point of view.
PROPOSED NEW SOLUTION

- **Record** “radio-activity” (subframes) in eNB at the lowest level in well-defined conditions and collect the respective initial (before recording) and final (after recording) external systems states.

- Put external systems in their respective initial state and **replay** recorded radio-activity (subframes) in eNB at the lowest level. Collect the respective final (after replaying) external systems states.

- Respective final states of external systems after recording and after replaying **shall be identical**.

- Make the solution agnostic to 1ms I/O, practical and automatable.
ASSUMPTIONS

• Well-defined radio conditions
 • Can be arbitrary
 • Part of the record/playback scenario

• Respective states of external systems
 • Can be arbitrary
 • Part of the record/playback scenario
 • External systems are proofed (only the eNB is a System Under Test) and restart-able (can be put in their respective initial states)
 • External systems provide asserted/proofed state exhibition methods (so to allow for comparison methods)

• Can LTE be fully deterministic?
 • Target an implementation with a deterministic behavior...
CAN LTE BE FULLY DETERMINISTIC?

- **C-RNTI allocation**
 - OAI eNB currently allocates C-RNTI (0x003C-0xFFF3) in a random manner
 - The C-RNTI allocation is therefore modified to allocate a free value within a predefined C-RNTI range sized for the maximum number of UE’s supported by the eNB.

- **UE Authentication**
 - The 3GPP standards enforces UE authentication through HSS system and involves UE and MME through a set of authentication control
 - The eNB code performing MAC authentication control is bypassed
 - Bell Labs ePC (ltebox) is modified to behave in ‘bypass mode’ regarding authentication

- Anything else? Discussion about FFT/iFFT approximation...
RECORDING I/Q

5MHz only – USRP only
OAI build option –usrp-recplay

--subframes-record

USRP B210/B205
Duplexer
Attenuator

usrp_lib.cpp (code modification)
device_init() // malloc sf area 256 bits aligned

trx_usrp_read() // copy ts&sf-data in sf area from
// usrp received subframe

trx_usrp_end() // save sf area to disk

Subframes in eNB RAM

- ts sf0-data
- ts sf1-data
- ts sfN-data

RAM size = ((7680*4)+8)*subframe-max
Example: subframe-max=120000 (2 minutes scenario => 3.6 GB)

--subframes-file
Subframes on disc file

--subframes-max

Linux/Windows

Ultrasound

Nokia Bell Labs
OPEN AIR INTERFACE

Bell Labs ePC

Linux/Windows

Nokia Bell Labs - OpenAirInterface Alliance restricted
REPLAYING I/Q

5MHz only – USRP only
OAI build option –usrp-replay

--subframes-read-delay
nb of µs to complete read

800µs matches real radio
slow down or accelerate

--subframes-write-delay
nb of µs to complete write

25µs matches real radio
slow down or accelerate

--subframes-loops
nb of loops to run the whole
subframe area

usrp_lib.cpp (code modification)

device_init () // mmap sf file into sf area
 // 256 bits aligned

trx_usrp_read () // wait read delay
 // return ts & sf-data from sf area

trx_usrp_write () // wait write delay; return

trx_usrp_end () // munmap sf area; close sf file

Subframes in eNB RAM

RAM size = ((7680*4)+8)*subframe-max
Example: subframe-max=120000 (2 minutes scenario => 3,6 GB)
ASSERTING CORRECTNESS

- **Record phase - Initial state**
 - UE: not connected
 - HSS: freshly started
 - ePC: freshly started

- **Record phase - scenario**
 - UE attaches
 - UE data traffic
 - UE detaches

- **Record phase - Final state**
 - UE: disconnected
 - HSS: has attached one UE
 - ePC: has attached/traffic/detached one UE

- **Replay phase - Initial state**
 - UE: not connected
 - HSS: freshly started
 - ePC: freshly started

- **Replay phase - scenario**
 - UE attaches
 - UE data traffic
 - UE detaches

- **Replay phase - Final state**
 - UE: disconnected
 - HSS: has attached one UE
 - ePC: has attached/traffic/detached one UE

`counters.sh > final_state_record`

`counters.sh > final_state_replay`

`diff final_state_record final_state_replay ?`
CURRENT USAGE

• **Replay I/Q files on full and split eNB**
 Works the same. For split eNB, compile and run RRU in replay mode, compile RCC in replay mode. Read/write delay can be used to artificially increase/decrease fronthaul bit rates.

• **valgrind**
 Some memory leaks found, to be fixed

• **kcachegrind**
 Code coverage

• **Test of re-architected code (RU-RAU-split branch)**

• **Debugging**
LIMITATIONS

• **5MHz only**
 subframe area limited to 5MHz – no global file information stored – can be easily improved. However 20MHz will consume a lot of RAM and disk space.

• **USRP only**
 USRP code modified. Might be re-architected (record/replay outside device ?)

• **UE data traffic shall be restartable**
 Use local (Bell Labs) ePC as destination IP is ok. Internet traffic is not necessarily restartable.

• **Timestamp overwrite with current time** (to be done soon)
REPLAY DEMO

• I/Q files
 A set of I/Q files have been recorded by Bell Labs:
 • 1 UE (attach, traffic, detach)
 • 2 UE’s in parallel (attach, traffic, detach)

• Local PC with OAI eNB built in record/replay mode
 Without the need of radio board!

• Replay one loop of I/Q with OAI code compiled with gcov

• Generate code coverage view (lcov)

• Look at OAI code coverage