

Ettus Research USRP

Tom Tsou tom.tsou@ettus.com

3rd OpenAirInterface Workshop April 28, 2017

Agenda

- Company Overview
- USRP Software Ecosystem
- Product Line
 - B-Series (Bus)
 - N-Series (Network)
 - X-Series (High Performance)
 - Synchronization
- USRP for 5G Research & Development
- Selected Applications

Ettus Research Overview

- Maker of Universal Software Radio Peripheral (USRP™)
- Support a diverse software ecosystem
- RF from DC 6 GHz, MIMO capability
- Wireless Innovation Forum 2010 Technology of the Year
- Wireless Innovation Forum 2014 International Achievement Award
- About The Company
 - Founded in 2004
 - Located in Silicon Valley, California, USA
 - Stand alone subsidiary of National Instruments since 2010
 - Partner with Corad Technology for China distribution since 2012

National Instruments

Ettus Research™

A National Instruments Company

- Supplier of Computer-Based
 Measurement and Automation
- Long-term Track Record of Growth and Profitability
- \$1.23B Revenue in FY-2016
- Invest ~16% of revenue in R&D
- > 8,000 employees; operations in 49+ countries
- Significant investments in RF test, microwave design, and software defined radio

VSAs & VSGs

Power Meters

FPGA I/O & Co-processing

Amplifiers & Attenuators

Switching

Software
Defined Radio

Development for a Range of Industries

Communications & RF Identification

Utilities & Infrastructure

Aerospace & Defense

Land Mobile & Safety Radio

Research Topics

Data rate

Capacity

Power Consumption

Spectrum Sharing

Interference

Security

Monitoring

Latency

Research/Education

Medical Devices

Automotive

USRP Software Ecosystem

USRP Software Ecosystem

Hardware

Radio - Embedded CPU, FPGA and/or host connected
RF board
Antenna
RF signal conditioning

USRP Radios

RFNoC - RF Network on a Chip

- Heterogeneous Digital Signal Processing with FPGA
- Support composable and modular designs using GPP and FPGA
- Modular IP and interface points within FPGA

USRP Product Line

USRP B-Series Overview

Specs

- Low Cost integrated RF solution
- Based on Analog Devices AD9361 RFIC
- RF Frequency Range: 70MHz 6GHz
- Configurable clocking 1.92 MHz 61.44 MHz
- USB 3.0 interface
- USRP B200
 - 1 TX / 1 RX Half or Full Duplex
 - Up to 56MHz single channel bandwidth
- USRP B210
 - 2 TX / 2 RX Half or Full Duplex, Coherent
 - Up to 56 MHz single channel bandwidth
 - Up to 30.72 MHz dual channel bandwidth
 - MICTOR, JTAG, and GPIO connectors

Ettus

B200mini

- Small form-factor B200
 - Up to 56MHz single channel bandwidth
 - USB 3.0 bus powered
 - Tx/Rx & Rx2 antenna ports
 - Shared 10 MHz/PPS input
 - $-89 \times 55 \text{ mm} (3.5 \times 2.17 \text{ in})$
 - Industrial version B200mini-I

Ettus

USRP N-Series

Ettus

Specifications

Freq Range: DC - 6 GHz

Up to 25 Msps @ 16-bit samples and 50 Msps @ 8-bit samples

- ADC: 14-bit

- DAC: 16-bit

- Interface: 1 GigE

- Fixed rate FPGA clock 100 MHz
 - Sample rate conversion to 30.72 MHz required for LTE
 - Amarisoft LTE eNodeB

USRP X-Series

Ettus ResearchTM

X Series

- Two wideband RF daughterboard slots (2x2 MIMO)
 - Up 160MHz RF bandwidth per channel at 200 Msps
 - Selection covers DC to 6 GHz
 - ADC 14 bit
 - DAC 16 bit
- Large, customizable Kintex-7 FPGA
 - USRP X300 XC7K325T
 - USRP X310 XC7K410T
- Multiple high-speed interfaces
 - Dual SFP(+) ports for 1 or 10 Gigabit Ethernet
 - PCle x4
- Clocking architecture
 - 200 MHz, 184.32 MHz for LTE
 - Optional GPSDO
 - External 10 MHz/1 PPS reference input
- Half-width 1U form factor

Front

Back

Daughterboard Frequency

UBX

- 10 MHz to 6 GHz
- Up to 160 MHz RF bandwidth
- Full duplex transceiver
- Available synthesizer synchronization for phase aligned operation
- 40 MHz on N200, 160 MHz on X300
- Full shield, high dynamic range
- High performance 8dB NF @ +5dBm IP3

Frequency and Time Synchronization

Board Mount GPS-Disciplined Oscillator

Module Specifications		
1 PPS Accuracy	±50ns to UTC RMS (1-Sigma) GPS Locked	
Holdover Stability	<±20μs over 3 hour period at +25C	
1 PPS Output (OCXO Flywheel Generated)	3.3VDC CMOS	
RS-232 Control	NMEA & SCPI-99 Control Commands, Integrated into UHD	
GPS Frequency	L1, C/A 1574MHz	
GPS Antenna	Active (5V compatible) or Passive	
GPS Receiver	50 Channels, Mobile, WAAS, EGNOS, MSAS capable	
Sensitivity	Acquisition -142dBm, Tracking -168dBm	

Oscillator Specifications				
Frequency Output	10MHz			
10MHz Retrace	±2E-08 after 1 hour at 25C			
Frequency Stability Over Temperature (Unlock Condition)	±2.5E-08			
Warm Up Time	< 1 min at +25C			

OctoClock - 8 Channel Clock Synchronization

Applications

 Scalable time and frequency synchronization for large channel count systems

Features

- 8 Channel 10 MHz and PPS Distribution
- Choose between Internal / External sources
- Optional integrated GPS disciplined clock

USRP for 5G

Requirements for 5G

- Up to 6 GHz frequency coverage
- 3G/4G/5G capable RF performance
- Ability to support multi-carrier operation (LTE Carrier Aggregation)
- 10 Gig Ethernet connectivity
- Available FPGA resources for DSP offload

USRP Product Comparison

	Bus B2xx	Networked N2xx	High Performance X3xx
Frequency	70 MHz - 6 GHz	Baseband - 6 GHz	Baseband - 6 GHz
RF Bandwidth	56MHz (30.72 MHz in 2x2)	40 MHz	160 MHz
Channels	2 Tx, 2 Rx	1 Tx, 1Rx	2 Tx, 2 Rx
RF Performance	Good	Better	Best
Architecture	Integrated RF	RF Daughterboard	RF Daughterboards
Communication	USB	1 GbE	10 GbE or PCle
MIMO Capability	Up to 2x2	Up to 2x2	Up to 256x256
LabVIEW Support	Yes	Yes	Yes
FPGA/CPU	Spartan 6	Spartan 6	Kintex 7
NI Version	USRP-290x	USRP-292x USRP-293x	USRP-294x USRP295x
S/W Ecosystem	UHD C/C++ GNU Radio MatLab Xilinx ISE	UHD C/C++ GNU Radio MatLab Xilinx ISE	UHD C/C++ GNU Radio MatLab Xilinx Vivado

Analog Devices AD9371 RFIC

- Rx and Tx bandwidth up to 100 MHz
 - Increased from 56 MHz on AD9361 (B200/B210)
- Overall improved RF performance
 - 16-bit ADC and 14-bit DAC resolution
 - Improved quadrature and LO leakage calibration
- **Applications**
 - 3G/4G Micro and Macro single carrier
 - 3G/4G Picocell multi-carrier
 - 5G development

Applications

X300 - RFNoC Real Time Spectrum Analyzer

5G Massive MIMO at Lund University, Sweden

Goal: Build a massive MIMO,100x10 antenna system to validate theoretical results with real time processing

Prof Fredrik Tufvesson

5G Massive MIMO Application Framework

Research™

Goal: Build a cellular massive MIMO,100x10 antenna system to validate theoretical results with real time processing

System Parameters

Parameter	Values
No. of base station antennas	64 - 128
RF Center Frequency	1.2 GHz - 6 GHz
Bandwidth per Channel)	20 MHz
Sampling Rate	30.72 MS/s
FFT Size	2048
No. of used subcarriers	1200
Slot time	0.5 ms
Users sharing time/freq slot	10

- MIMO base station communicating with a single channel mobile user
- IQ sampling of 15.7GB/s on the uplink and downlink
- TDD operation enabling channel reciprocity

Bristol University (UK) Massive MIMO

New York Polytechnic University - 5G mmWave

Legend Transmitter Site Receiver Site Receiver Site

 Prototype system uses NI FlexRIO and LabVIEW software

Prof Ted Rappaport

Thank You