

# Efficient Traffic Aggregation for Dual Connectivity

Carlos Pupiales Ilker Demirkol

carlos.pupiales@upc.edu ilker.demirkol@upc.edu

#### Partially supported by:





#### Outline



- Dual Connectivity
- 2 Traffic Aggregation
- 3 Challenges
- 4 Capacity and Congestion Aware (CCW) Flow Control
- 6 Results

#### **Dual Connectivity**





- The UE is connected with two BSs at the same time
- BSs are connected using a non-ideal BH
- CP and UP managed by one BS
- Use cases:
  - ► To increase the data rate

#### **Dual Connectivity**





- The UE is connected with two BSs at the same time
- BSs are connected using a non-ideal BH
- CP and UP managed by one BS
- Use cases:
  - ► To increase the data rate
  - ► To improve the reliability

#### **Dual Connectivity**





- The UE is connected with two BSs at the same time
- BSs are connected using a non-ideal BH
- CP and UP managed by one BS
- Use cases:
  - To increase the data rate
  - ► To improve the reliability
  - ► To provide mobility robustness



• Ideally,  $DC = MN_{SC} + SN_{SC}$ 





- Ideally,  $DC = MN_{SC} + SN_{SC}$ 
  - Continuous data flow from both BSs





- Ideally,  $DC = MN_{SC} + SN_{SC}$ 
  - Continuous data flow from both BSs
- However





- Ideally,  $DC = MN_{SC} + SN_{SC}$ 
  - Continuous data flow from both BSs
- However
  - Variable radio link conditions





- Ideally,  $DC = MN_{SC} + SN_{SC}$ 
  - Continuous data flow from both BSs
- However
  - Variable radio link conditions
  - Assigned radio resources





- Ideally,  $DC = MN_{SC} + SN_{SC}$ 
  - Continuous data flow from both BSs
- However
  - Variable radio link conditions
  - Assigned radio resources
  - BH latency







- Ideally,  $DC = MN_{SC} + SN_{SC}$ 
  - Continuous data flow from both BSs
- However
  - Variable radio link conditions
  - Assigned radio resources
  - BH latency
- Why?





- Ideally,  $DC = MN_{SC} + SN_{SC}$ 
  - Continuous data flow from both BSs
- However
  - Variable radio link conditions
  - Assigned radio resources
  - BH latency
- Why?
  - Out-of-order arrivals





- Ideally,  $DC = MN_{SC} + SN_{SC}$ 
  - Continuous data flow from both BSs
- However
  - Variable radio link conditions
  - Assigned radio resources
  - BH latency
- Why?
  - Out-of-order arrivals
  - Under-utilized links





- Ideally,  $DC = MN_{SC} + SN_{SC}$ 
  - Continuous data flow from both BSs
- However
  - Variable radio link conditions
  - Assigned radio resources
  - BH latency
- Why?
  - Out-of-order arrivals
  - Under-utilized links
  - High buffering delays







• Through which BS should the PDUs be sent?





- Through which BS should the PDUs be sent?
- Available radio resources can change every TTI





- Through which BS should the PDUs be sent?
- Available radio resources can change every TTI
- Constant data flow through both BSs





- Through which BS should the PDUs be sent?
- Available radio resources can change every TTI
- Constant data flow through both BSs
- Capacity and Congestion Aware (CCW) Flow Control

#### **CCW Main Features**



- Maintains a continuous data flow from both BSs towards the UE.
- Fully utilizes the assigned radio resources of both BSs
- Avoids under-utilized links
- PDUs are periodically split according to:
  - Average capacity allocated to the split DRB in each BS
  - Average buffering delay experienced in both RLC buffers
- Agnostic to the RAT setup and MAC scheduler

#### Testbed Setup





- OAI eNB, UE, EPC
  - Mosaic5G for EPC
- UE requires two protocol stacks for DC
  - ▶ mUE + sUE
- Real CQI trace from a pedestrian profile
- ORBIT Testbed from Rutgers University

Further implementation details can be found at C. Pupiales, et al., "Software-Based Implementation of Dual Connectivity for LTE," in MASSW 2019.

#### **Evaluation**



- Algorithms:
  - Round Robin
  - Delay-based <sup>1</sup>
- Scenarios:
  - ► Scenario A: MN = SN = 10 MHz
  - ► Scenario B: MN = 5 MHz, SN = 10 MHz
- TCP traffic using iperf
- 3GPP reordering mechanism
- SC throughput is the baseline

<sup>&</sup>lt;sup>2</sup>D. Lopez-Perez, et al., "Long Term Evolution-Wireless Local Area Network Aggregation Flow Control," IEEE Access, 2016.

## Results: Reordering Disabled





Scenario A  $\rightarrow$  56 Mbps MN = 28.5, SN = 27.5 Mbps



Scenario B  $\rightarrow$  41.6 Mbps MN = 14.1, SN = 27.5 Mbps

# Results: Reordering Enabled





Delay-based RR CCW 50 40 40 Throughput [Mbps] 0 0 30 30 20 20 0 80 -100 -120 150 40 - 60 - 80 - 120 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 60 80 100 150 t reodering [ms] t reodering [ms] t reodering [ms]

Scenario A  $\rightarrow$  56 Mbps MN = 28.5, SN = 27.5 Mbps

Scenario B ightarrow 41.6 Mbps MN = 14.1, SN = 27.5 Mbps



# THANKS FOR YOUR ATTENTION

# ANY QUESTION?