PV-RAN for Whole-Stack Slicing

Matthias Sander-Frigau, Tianyi Zhang, Hongwei Zhang, Ahmed Kamal, Arun Somani

Presented by Matthias Sander-Frigau, Ph.D
Department of Electrical Engineering and Computer Science
Iowa State University – USA
CyNet for Wireless Living Labs

NSF CyNet project
- End-to-end Software-Defined Infrastructure for Smart Agriculture and Transportation (ECE, PSI, InTrans)
- Deployment of two field-deployed SDR-based RANs in Ames, IA, USA

Goals

- Support diverse applications, e.g.: NB-IoT & Predictable, Reliable, Real-time, and high-Throughput (PRRT)
- Allow domain scientists/networking researchers to prototype and deploy solutions in-field

Heterogeneous requirements
Throughput, timeliness, reliability, energy efficiency

Smart transportation for R&E
AR-based transportation with field and cyber virtuality

Smart agriculture for R&E
Real-time camera imaging & real-time control of UGVs

OAI Summer Workshop 2021
The solution?

Slice-oriented solution...

What if networking researchers want to:

• Prototype and experiment novel PHY & MAC protocols together with existing solutions?

• Develop advanced wireless networking applications that have radically different requirements within a family of services (i.e.: uRLLC)?

Problem: How to allow RAN virtualization to use distinct PHY & MAC layers per slice on the same radio front-end (a.k.a. Whole-Stack Slicing)?
What we propose

• **PV-RAN (Paravirtualized RAN):** A lightweight, open-source platform that enables Whole-Stack Slicing where different PHY and MAC layers can be adopted at different RAN slices on the same physical radio device (SDR)

 Share the same SDR physical resources across multiple slices by virtualizing the physical wireless resources (i.e.: time-domain baseband traffic also known as I/Q samples)

 Allow multiple concurrent PHY & MAC layers to simultaneously access the radio device by decoupling RF I/O from the PHY layer

• Solves the following key challenges:
PV-RAN

- Centralized RF
- Virtualized baseband traffic
- One radio device can serve several OpenAirInterface slices with different PHY and MAC layers
- Generic service for sharing physical RF resources
- Orthogonal to the 3GPP functional split
- Virtualization layer can be integrated with O-RAN
Challenge #1: Physical Wireless Resource Virtualization

- BS computer uses Xen hypervisor
- Slices are paravirtualized instances of OpenAirInterface (PV guests)
- I/Q samples are transferred through shared-memory inter-domain communication channels
- Split-driver model (PV frontend and PV backend device drivers)
- PV-Back for I/Q sample streaming (RF I/O) between PHY layers and the SDR device
SDR concurrent access

OAI USRP interface (`usrp_lib.cpp`) communicates with the USRP device through Universal Hardware Driver (UHD)

- USRP interface relies on UHD API (C++ bindings):
 - RF front-end configuration (channel bandwidth, frequency, gains, …)
 - RF I/O operations for I/Q sample streaming

BUT... Only one process can access UHD!

Solution: Delegate slices RF I/O to PV-Back exclusively

- In-band timestamping synchronization mechanism
- Add Xen virtual channel support to OAI’s USRP interface
- Transparent Virtualization via UHD API Remoting
Transparent Virtualization

Transparent virtualization via UHD API Remoting
API Remoting uses run-time library interposition of UHD API function calls. It consists of:

- **UHD API Remoting Frontend**
 Dynamic library pre-loaded before USRP interface shared library (liboai_usrpdevif.so) code’s execution. Substitutes UHD library calls with wrapper function stubs.

- **UHD API Transport**
 Virtual control channel that transmits control messages to the UHD API Remoting Backend in Dom0.

- **UHD API Remoting Backend**
 Handles call requests received over the UHD API Transport and executes them on the SDR device.
PV-RAN system configuration

Hardware

BS computer
- Dell Tower Precision 3630
- CPU: Intel Core i9-9900 @ 3.10 GHz
- Memory: 64 GB
- NIC: Intel x722-DA4

SDR
- USRP x310
- Daughterboard: 2x UBX-160
- Fronthaul: OS2 fiber, Intel SFP+ transceiver
- Antennas: VERT 2450 (for LTE), VERT900 (for TVWS)

Software

Xen Hypervisor
- Version: Xen 4.9.2
- Dom0 OS: Ubuntu 18.04.4 LTS
- LVM volume group size: 475 GB
- UHD version: v.3.15.0.0
- Intel NIC driver: i40e

DomU PV guests
- DomU OS: Ubuntu 16.04.4 LTS
- vCPUs: 4
- Memory: 6 GB
- LVM logical volume size: > 18 GB
- OAI version: v1.2.1
- Xen shared libraries: libxenchain, libxenenvtchn, libxengnttab, libxentoolcore, libxentoollog

For IDC
- Require custom kernel compiled with gntalloc, gntdev, evtchn and xenbus
PV-RAN demo testbed

WebUI Slice Orchestrator
- Remote access to DomU guests
- Statistics visualization

PV-RAN platform
- PV-RAN Controller
- 1x X310 eNodeB (TVWS frequency bands)
- 2x DomU slices (one B210 UE per slice)
PV-RAN demo

OAI Summer Workshop 2021
Conclusion

PV-RAN: First Paravirtualized RAN for physical wireless virtualization that enables whole-stack slicing where different PHY and MAC can be adopted for diverse communication services

- Compatible with other components from MOSAIC5G (FlexRIC, OAI-CN, etc.)
- Open-source software: https://gitlab.com/dnc-isu/cynet

PV-RAN is extensible

- Can be extended to network slicing strategies involving Time Division Multiplexing (TDM) and hybrid-TDM-FDM
- Extensible to other SDR platforms (HackRF, BladeRF)
- Can be ported to other open-source platforms such as KVM (using the shared-memory interface Nahanni)
- Can also be integrated with end-to-end network slice management systems such as those based on the O-RAN architecture and Open Networking Foundation