High Performance and Cloud Native Design Aspects in OAI 5G Core

Luhan Wang, Beijing University of Post and Telecommunication
Outline

1. OAI Activities in BUPT
2. Functions and Performance
3. Stateless and Intelligent Design
1. OAI Activities in BUPT

- Beijing Lab of Advanced Information and Networks
 - A long history cooperation between BUPT and OAI since 2014

- OAI Activities in BUPT
 - OAI 5G core development
 - RAN Development: PRACH Procedures, UL-MIMO, Accelerations
 - Use cases: Location, Timing, New Multiaccess (OAM)
2. Functions and Performance

- Basic functions development

AMF: Access and Mobility Management Function
AUSF: Authentication Server Function
SMF: Session Management Function
UPF: User Plane Function
UDM: Unified Data Management
UDR: Unified Data Repository
UDSF: Unified Data Service Function
NWDAF: Network Data Analytics Function
OAI-5G-Core: Open Air Interface 5G Core

- Basic functions development

AMF: Access and Mobility Management Function
AUSF: Authentication Server Function
SMF: Session Management Function
UPF: User Plane Function
UDM: Unified Data Management
UDR: Unified Data Repository
UDSF: Unified Data Service Function
NWDAF: Network Data Analytics Function
OAI-5G-Core: Open Air Interface 5G Core
2. Functions and Performance

- **Performance of the current OAI 5G Core**

Environment:

- 5G gNB: Amarisoft gNB, also tested with commercial 5G base stations, Huawei/Baicells/Sageran;
- 5G UE: Xiaomi K30i, also tested with Huawei 5G Routers, Quectel 5G Modules (Qualcomm X55);
- 5G Core: OAI- AMF, SMF, SPGWu/UPF, also tested AUSF/UDM/UDR.
2. Functions and Performance
2. Functions and Performance

- **Performance of the current OAI 5G Core**

 - The OAI 5G Core is also tested with commercial core tester, and simulators.

 ![Diagram showing testing scenario with Choicete™ 5G Core Tester and UPF testing with Trex](image)

2021-06-21
2. Functions and Performance

Code Directory

- n4
 - `/SRC`
 - cmd: Main function and executable file
 - conf: Configuration file
 - log: Log function
 - pfcp: Encoding and decoding PFCP messages
 - pkg: Receive and send pfcp messages
 - util: Toolkit
 - vpp: Interact with vpp

Buptvpe

- `/src`
 - plugins: VPP bundled plugins directory
 - svm: Shared virtual memory allocation library
 - vlib: VPP application library source
 - vlibapi: VPP API library source
 - vnet: VPP networking source
 - vpp: VPP application source
 - vpp-api: VPP application API source
 - vppinfra: VPP core library source

Module Composition

- UDP Server
 - Classifier
 - PFCP Decode
 - Heartbeat
 - Association
 - Session Establishment
 - Session Modification
 - Session Deletion
 - PFCP Encode
 - UDP Client
 - Govpp Unix socket

- DATA
 - Forward according to Rules
 - UL TEID PDR FAR
 - DL TEID PDR FAR

- N4
 - GTP
 - VPP
 - Drop
 - NAT
 - N6
 - ARP
2. Functions and Performance

- Performance of the current OAI 5G Core

Users and bears can be up to 10k in current version.

UPF uplink throughput: ≈7.8Gbps, downlink: ≈8Gbps

@: Intel(R) Xeon(R) CPU E5-2670 2.60GHz; 32GB RAM, 10Gbps NIC
3. Stateless and Intelligent Design

Objectives

- Cloud-native, to support horizontal scaling in cloud environment;
- Data and analysis capabilities exposure, support intelligent orchestration.

Possible use cases

- **Automatic failure recovery**
 Discover failed NFs, and recover from failures without causing interruptions to connections.

- **Horizontal scaling**
 Measuring NF instances work load, and dynamically adjust the numbers, locations and resources of NF instances.
3. Stateless and Intelligent Design

- **Problems**
 - Contexts are coupled with NFs, can’t be shared among each other;
 - Servitization interface is not supported in RAN, connection-oriented;

- **Undergoing work**
 - UDSF, storage the unstructured NF contexts in USDF, and shared among NFs.
 - RAISE, RAN integrated servitization enabler, work as a middlebox between gNB and Core.
 - NWDAF, collect NF and service status, generate strategies to manage the network.
3. Stateless and Intelligent Design

- **UDSF Development**

<table>
<thead>
<tr>
<th>NF service</th>
<th>Service Operations</th>
<th>Operation Semantics</th>
<th>Example Consumer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstructured Data Management</td>
<td>Query</td>
<td>Request/Response</td>
<td>Any NF</td>
</tr>
<tr>
<td></td>
<td>Create</td>
<td>Request/Response</td>
<td>Any NF</td>
</tr>
<tr>
<td></td>
<td>Delete</td>
<td>Request/Response</td>
<td>Any NF</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>Request/Response</td>
<td>Any NF</td>
</tr>
</tbody>
</table>

- The latency to UDSF can be significant, the response time must be kept at a minimum.
- A stateless NF service consumer can maintain a local cache which will reduce the requests to the UDSF and the response time significantly.
3. Stateless and Intelligent Design

- **NWDAF Development**

 NF Services consumed by NWDAF for data collection

<table>
<thead>
<tr>
<th>Service producer</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMF</td>
<td>Namf_EventExposure</td>
</tr>
<tr>
<td>SMF</td>
<td>Nsmf_EventExposure</td>
</tr>
<tr>
<td>PCF</td>
<td>Npcf_EventExposure (for a group of UEs or any UE)</td>
</tr>
<tr>
<td></td>
<td>Npcf_PolicyAuthorization_Subscribe (for a specific UE)</td>
</tr>
<tr>
<td>UDM</td>
<td>Nudm_EventExposure</td>
</tr>
<tr>
<td>NEF</td>
<td>Nnef_EventExposure</td>
</tr>
<tr>
<td>AF</td>
<td>Naf_EventExposure</td>
</tr>
<tr>
<td>NRF</td>
<td>Nnrf_NFDiscovery</td>
</tr>
<tr>
<td></td>
<td>Nnrf_NFManagement</td>
</tr>
</tbody>
</table>

- Slice load level related network data analytics.
- Observed service experience related network data analytics.
- NF load.
- UE related analytics, user data congestion analytics.
- QoS sustainability analytics.
Thank you very much
Merci beaucoup
ありがとうございます
고맙습니다
Danke bestens
شكرا جزيلا
весьма благодарить
Muchas gracias
תודה רבה
Muito obrigado

Luhan WANG, wluhan@bupt.edu.cn