

5G NR Status and Roadmap

OAI workshop, June 24th 2021 Florian Kaltenberger

What is OpenAirInterface?

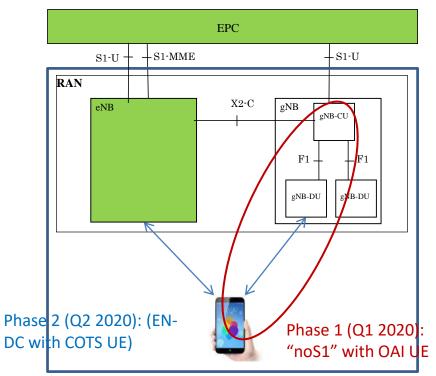
- Open-source software-based implementation of 3GPP Technologies
 - Starting at LTE (Rel 8), including features from LTE-Advanced (Rel 10/11/12), LTE-Advanced-Pro (Rel 13/14), going on to 5G Rel (15/16/...)
 - Spanning the full protocol stack of 3GPP standard
 - E-UTRAN (eNB, gNB, UE, nr-UE)
 - EPC (MME, S+P-GW, HSS)
 - 5GC (AMF, UMF, SMF)
 - Realtime RF and scalable emulation platforms
 - Works with many SDR platforms (USRP, Benetel, AW2S, ...)
- Makes it is feasible to put a fully-compliant 4G eNodeB and 5G gNB in a commodity x86-based computer (or data center)
- Objectives
 - Building a community of individual developers, academics and major industrials embracing open-source for 5G
 - Provide a reference implementation for 4G/5G 3GPP systems
 - Allow easy adoption of the software in other projects or products

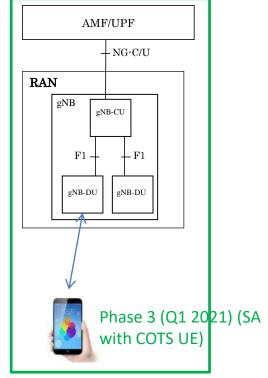
The OpenAirInterface Software Alliance

- Launched in 2014 as an endowment fund (French "Fonds de Dotation")
- Current strategic members

- Many associate members
- Goals:
 - Promote OpenAirInterface and its open-source licensing model
 - Support the community of developers and users
 - Accept donations to maintain engineering support team

Fraunhofer NOKIA Bell Labs


5G RAN



Development phases

Non-standalone (ENDC)

Standalone

Status of 5G NSA development

- Non-standalone EN-DC with COTS phones since August 2020
 - FR1 TDD with 30kHz subcarrier spacing, 106PRB (40MHz), SISO
 - No split bearer, traffic is redirected to 5G cell
- Current performance
 - 80Mbps DL throughput (with 64QAM)
 - 7Mbps UL throughput (with QPSK, to be improved)
 - Up to 2 users tested
- Available in develop branch

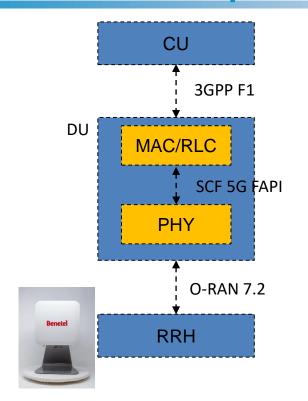
5G NSA supported platforms

- Tested RRUs
 - USRP B210 and N310 (for both eNB and gNB)
 - Benetel RRU (LTE band 7 and NR band n78): O-RAN 7.2 split
 - AW2S (LTE band 38, NR support in development)

- Oppo Reno 5G
- Samsung A90 5G
- Samsung A42 5G
- Google Pixel 5G
- Simcom SIMCOM8200EA
- Quectel RM500Q-GL
- Tested Core networks
 - OAI EPC
 - Nokia LTEbox
 - ..

Status of 5G SA development

- First complete attach: 4th May 2021
- First DL and UL user-plane traffic (ping): 18th May 2021
- Validated RRUs
 - USRP B210 and N310
- Validated UEs:
 - QUECTEL RM500Q-GL and
 - SIMCOM SIM8200EA
 - Huawei Mate 30 (by Fujitsu)
- Validated Core networks
 - OAI 5GC and
 - Nokia SAbox
- Limitations
 - Currently only initial bandwidth part (BWP), which uses a subset of the cell bandwidth is used
- Merge status
 - Available in branch develop-NR_SA_F1AP_5GRECORDS
 - Merge request ongoing


Additions for SA

- CORESETO, SIB1, initial BWP
- Contention based initial access
- RRC:
 - RRCSetup[Complete]
 - SecurityMode[Command|Complete]
 - UECapability[Request|Indication]
 - RRCReconfiguration[Complete]
 - Done in multiple steps
 - [DL|UL]InformationTransfer
 - Integration with NAS
- RLC: Handling of SRB0, SRB1, DRB
- PDCP: security (integrity)
- NGAP: connection to AMF
- GTPU: connection to UPF

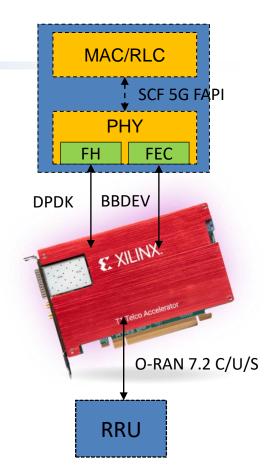
Functional splits in OAI 4G/5G

- F1-C and F1-U
 - F1-C completed
 - Interoperability testing with Acceleran ongoing
 - F1-U expected Q2 2021
- 5G FAPI
 - today all L1 procedures compliant with SCF 5G FAPI
 - nFAPI under integration (Q2 2021)
- Fronthaul
 - O-RAN 7.2 U-plane done (with Benetel)
 - Interoperability with other RRUs planned for 2H 2021

Roadmap 1/2

- Stabilize X2 and S1 procedures in NSA
 - To recover from errors on 4G or 5G link failures
- Improve throughput
 - Target1: 100Mbps DL, 15Mpbs UL (SISO 106 PRB)
 - Target2: 200Mbps DL, 30Mpbs UL (SISO 273 PRB)
- Link adaptation based on CQI
- Basic NSA FR2 interoperability
 Summer 2021
 - Including beamforming procedures
 - Ongoing, debugging initial access procedure
- DL MIMO support
 Summer 2021
 - Including CSI RS and feedback reporting
- Support for multiple bandwidth parts and other configurations
 Q3 2021
 - 60kHz SCS (Also requires multiplexing multiple SCS)
 - 10/20MHz bandwidth part
- Support for localization (Rel 16) 2022
- Massive MIMO support for FR1
 2022

Roadmap 2/2


- SA specific (immediate)
 - Activation of Dedicated bandwidth part & improve throughput
 - Retransmissions of msg3/msg4
 - Better handling of RRC UE connection/release (recover from link failure)
 - F1AP-U
- SA specific (Long term)
 - SDAP support
 - Support for FR2
 - Support for Non-terrestrial networks (Rel 17)
- Support open-RAN interfaces (E1, E2, ...)
 - See presentation on Mosaic5G

L1 Offload

- Xilinx T1 accelerator card
 - Contains ZU19EG MPSoC and ZU21DR RFSoC
 - Offload of forward error correction and fronthaul
- Goal1: integrate offload channel coding/decoding (LDPC) in OAI
 - T1 card set up with latest bitstream from VVDN
 - Integrated reference code as library in OAI
- Goal2: use card for O-RAN 7.2 fronthaul offload
 - Need O-RU for testing

