

Unleashing the potential of open-source in the 5G arena

Agenda OAI Objectives

- Open-Source for 5G
- Strategic Areas
 - 2 technical examples
- Roadmap for 2016

Commoditization of 3GPP Radio Systems and Open-Source

- Today it is feasible to put a fully-compliant 4G eNodeB and EPC in a commodity x86 or ARM-based computer (or data center for a pool of eNodeBs)
 - Emergence of "radio"-hackers in addition to commercial vendors
 - OAI Alliance
 - launched in 2014
 - 3GPP strategic members in 2015
- Coupling this with an open-source community makes for a very disruptive technology for the onset of 5G
 - What we're building
 - Community of hackers, academics and major industrials embracing open-source for 5G
 - What we hope to become
 - A strong voice and maybe a game-changer in the 3GPP world
 Real impact from "the little guys" on 3GPP systems

Bringing open-source into the accessnetworks

Challenges for 4.5G/5G

- FRAND License for open-source
 - Allow 3GPP members to contribute to open-source and still perceive royalties
 - Compatible with
 - academic/research/prototyping use
 - commercial use in devices, data centers and testing equipment
 - Community coexistence/synergy with standardization process
 - Use of open-source in prototyping phase of 5G
 - Open-source community following 3GPP process
 - Community representation in 3GPP via OSA?

Strategic Areas

Main areas of work around which we organize development

dovolopinont				
5G Modem	new waveform Relaying	Carrier aggregation Massive	Full-duplex Radio	
Software-defined 5G system	Cloud-native RAN SDN/NFV	Juju/OpenStack Ethe	MEC API ernet Fronthaul	c
Heterogeneous 5G Network	Ultra-dense network Coexiste	Unlicensed band nce and Aggregation	s	
Large-Scale Emulation	Realistic experimenta	ation Channel models	s Performance	
	PH	/ abstraction	System Integration	
Test and measurements	Interoperability / Compliance System Integration			
		Channel Sounding	Design Validation	
		0	0	
RF Platform			Low cost BS	
	Ettus Pure Com Research	中国移动通信 CHINA MOBILE nuand	_	
	131123311			

Liaisons with other bodies

Currently

- Regular interactions with
 - ETSI
 - NGMN
- 3GPP
 - Discussions planned in coming weeks with TSG RAN,SA,CN
- ITU
 - Discussions with ITU-T FG-IMT-2020, ITU-T focus group looking into the wireline requirements for 5G
- 5GPPP
 - Several users of OAI in 5GPPP projects (e.g. EURECOM, Nokia, Telecom Italia)
- OpNFV
 - Discussions planned in coming weeks

Two examples of 5G experimentation using OAI

- Softwarization of Networks
- IoT Waveforms

OSA Roadmaps toward Software-define 5G Network

Cloud-native 5G networks

- Phase 1: Stateless through distributed shared memory, multitenancy
- Phase 2: Mircoservice Architecture and NFV
- Supported projects: FP7 MCN, FUI ELASTIC

Network Orchestration

- Approach 1) Openstack and heatstack orchestrator
- Approach 2) Juju modeling for service-oriented deployment (https://jujucharms.com/q/oai)
- Supported project: FP7 MCN, FP7 FLEX, Canonical partnership program

Network Programmability -> network slicing

- Agent-controller protocol and southband API in support of SDN+MEC
 - agents: in charge of network function monitoring and programmability
 - Network controller: network abstraction (network state graphs), network application
 - realtime, standalone mode or as a plugin
- Supported projects: H2020 Coherent, H2020 Q4Health, ETSI MEC PoC

Softwarization of Networks (see it with Canonical at MWC 2016)

New waveforms and protocols for IoT

- OAI is including new ideas for 5G waveforms in support of IoT (e.g. UF-OFDM from Bell Labs underway, NB-LTE under discussion in community)
- Coupled with low-latency contention-based access

Next Steps for OAI and the OSA (general)

- Ensure a path 4G → 5G through open-source policy Reference implementation of Rel 13/14 → 5G
 - Work with new carrier candidates now (e.g. UFMC), short packet low-latency carriers, contention-based access
 - VRAN, NFV, MEC architectures
 - Rapidly-deployable EPC/eNB (with LTE or other backhaul)
- Serious contributors from outside Eurecom
 - Combination of hackers, academics, SMEs and major industry
- « ready to use » for anybody on commodity hardware (PCs + National Instruments)
 - and industrial platforms!
 - EURECOM ExpressMIMO2, NI/Ettus USRP, Nuand BladeRF, soon SoDeRa
- Multi-architecture
 - x86, ARM, soon NXP (Freescale)

Next Steps for OAI and the OSA (specific)

Robustification of current 4G implementation

- Maximum DL and UL Throughput (TM1-4)
- Mobility and handover support
- Carrier Aggregation

UE

- Making it work with a real eNodeB/EPC
- UF-OFDM

EPC

Separation of elements (MME,S/PGw) for cloud deployment

New elements

- eRRH (ethernet based remote radio heads with synchronization methods)
- Cloudification of access and core networks (data center deployments)

GitLab integration of testing procedures on several remote testing sites

EURECOM, USA and China

